Нестандартная кластеризация 4: Self-Organizing Maps, тонкости, улучшения, сравнение с t-SNE

Habrahabr 2
Часть первая — Affinity propagation
Часть вторая — DBSCAN
Часть третья — кластеризация временных рядов
Часть четвёртая — SOM
Self-organizing maps (SOM, самоорганизующиеся карты Кохонена) — знакомая многим классическая конструкция. Их часто поминают на курсах машинного обучения под соусом «а ещё нейронные сети умеют вот так». SOM успели пережить взлёт в 1990-2000 годах: тогда им пророчили большое будущее и создавали новые и новые модификации. Однако, в XXI веке SOM понемногу уходят на задний план. Хоть новые разработки в сфере самоорганизующихся карт всё ещё ведутся (большей частью в Финляндии, родине Кохонена), даже на родном поле визуализации и кластеризации данных карты Кохонена всё чаще уступает t-SNE.
Давайте попробуем разобраться в тонкостях SOM'ов, и выяснить, заслуженно ли они были забыты.

Читать дальше →