Метод BFGS или один из самых эффективных методов оптимизации. Пример реализации на Python

Habrahabr
Метод BFGS, итерационный метод численной оптимизации, назван в честь его исследователей: Broyden, Fletcher, Goldfarb, Shanno. Относится к классу так называемых квазиньютоновских методов. В отличие от ньютоновских методов в квазиньютоновских не вычисляется напрямую гессиан функции, т.е. нет необходимости находить частные производные второго порядка. Вместо этого гессиан вычисляется приближенно, исходя из сделанных до этого шагов.
Существует несколько модификаций метода:
L-BFGS (ограниченное использование памяти) — используется в случае большого количества неизвестных.
L-BFGS-B — модификация с ограниченным использованием памяти в многомерном кубе.
Метод эффективен и устойчив, поэтому зачастую применяется в функциях оптимизации. Например в SciPy, популярной библиотеки для языка python, в функции optimize по умолчанию применяется BFGS, L-BFGS-B.
Читать дальше →